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Abstract 

The stability analysis for the structure from motion problem presented in this paper 
investigates the optimal relationship between the errors in the estimated translational 
and rotational parameters of a rigid motion that results in the estimation of a minimum 
number of negative depth values. No particular estimators are used and no specific 
assumptions about the scene are made. The input used is the value of the flow along 
some direction, which is more general than optic flow or correspondence. For a planar 
retina it is shown that the optimal configuration is achieved when the projections of the 
translational and rotational errors on the image plane are perpendicular. For a spherical 
retina, given a rotational error, the optimal translation is the correct one, while given a 
translational error the optimal rotational error is normal to the translational one at an 
equal distance from the real and estimated translations. The proofs, besides illuminating 
the confounding of translation and rotation in structure from motion, have an important 
application to ecological optics. The same analysis provides a computational explanation 
of why it is much easier to estimate self-motion in the case of a spherical retina and why 
it is much easier to estimate shape in the case of a planar retina, thus suggesting that 
nature's design of compound eyes (or panoramic vision) for flying systems and camera- 
type eyes for primates (and other systems that perform manipulation) is optimal. 

The support of the Office of Naval Research under Grant N00014-96-1-0587 is gratefully acknowl- 
edged. 



1    Introduction 

The general problem of structure from motion is defined as follows: given a number of 
views of a scene, to recover the rigid transformations between the views and the structure 
(shape) of the scene in view. In the field of computational vision a lot of effort has 
been devoted to this problem because it lies at the heart of several applications in pose 
estimation, recognition, calibration, and navigation [8, 17]. For reasons related to the 
tractability of the exposition and without loss of generality, we consider here the case of 
differential motion for a camera moving in a static environment with the goal of recovering 
the camera's 3D rigid motion and the structure of the scene [42, 4, 30]. The problem has 
been traditionally treated in a two-step approach. The first step attempts to establish the 
correspondence between successive image frames, i.e., to identify in consecutive images 
features that are the projections of the same feature in the 3D scene. Such correspondence 
is expressed through displacement vectors or optic flow—an approximation of the motion 
field which represents the projection of the velocity field of scene points on the image. 
The second step attempts to interpret this correspondence or flow field and recover 3D 
motion and structure. 

During the Eighties, questions related to the uniqueness of solutions were answered for 
both the discrete case of point matches [24, 41] and the differential case [25, 44]. This work 
gave rise to closed form solutions and opened avenues into the study of uniqueness issues. 
Similar problems were solved in the photogrammetric literature [35]. The algorithms 
developed during this phase of research were based on two frames (or views) and the use 
of point features. Algorithms for the case of three (or multiple) frames were introduced 
in [40] with the formulation of the trilinear constraints and were generalized in [10] 
using geometric algebra. At the same time, algorithms appeared that made use of line 
correspondences [39], as well as algorithms that used both point and line correspondences, 
thanks to the trilinear constraints [40]. Also, these results were generalized to the case of 
uncalibrated cameras, a situation in which only projective (or, under some assumptions, 
affine) structure can be recovered [9, 15, 28, 21]. 

The promise of the uniqueness studies gave rise to an exciting quest for practical and 
robust algorithms for recovering 3D structure and motion from image sequences, but this 
was soon to be frustrated by high sensitivity to noise in the input used (optic flow or 
correspondence). While many solutions have been proposed, they become problematic 
in the case of realistic scenes and most of them degrade ungracefully as the quality of 
the input deteriorates. This has motivated research on the stability of the problem; [7] 
contains an excellent survey of existing error analyses. We will discuss the most important 
results in Section 3 in more technical detail after some mathematical prerequisites are 
given in Section 2. In summary, it can be concluded that the majority of the existing 
analyses attempt to model the errors in either the 3D motion estimates or the depth 
estimates, and due to the large number of unknowns in the problem, they deal with 
restricted conditions such as planarity of the scene in view or non-biasedness of the 
estimators. Notably absent in published efforts is an account of the systematic nature 
of the errors in the depth estimates due to errors in the 3D motion estimates. Put in 
different terms, there exists an interplay between 3D motion and depth. In existing 
approaches, however, the highly correlated nature of the depth errors at different image 



locations, due to 3D motion errors, is not reflected adequately. Furthermore, all analyses 
are based on the two-step approach, analyzing the estimation of 3D motion from noise- 
contaminated optic flow or correspondence. However, as has been shown in previous work, 
the estimation of 3D motion does not necessarily require the prior computation of exact 
correspondence [11, 12, 13, 20, 29]. Flow measurements, or even their signs, along some 
direction in the image, such as—for example—the one provided by the spatial gradient, 
are sufficient for recovering 3D motion [3]. Such measurements can be computed by even 
the simplest systems—biological or artificial—using, for example, Reichardt detectors or 
equivalent energy models [32, 33, 31, 43]. 

In this paper an approach that is independent of any algorithm or estimator is taken. 
Due to the geometry of image formation any spatiotemporal representation in the image 
is due to the 3D motion and the structure of the scene in view. If the 3D motion can be 
estimated correctly, the structure can be derived correctly using the equations of image 
formation. However, an error in the estimation of the 3D motion will result in the compu- 
tation of a distorted version of the actual scene structure. Of computational interest are 
those regions in space where the distortions are such that the depths become negative. 
Not considering any scene interpretation the only fact we know about the scene is that 
for it to be visible it has to lie in front of the image and thus the corresponding depth 
estimates have to be positive. Therefore the number of image points whose corresponding 
scene points would yield negative values due to erroneous 3D motion estimation should 
be kept as small as possible. This is the computational principle behind the error analy- 
sis presented in this paper. In particular, the following questions are studied. Assuming 
there is an error in the estimation of the rotational motion components, what is the error 
in the translational components that leads to a minimization of the negative depth values 
computed? Similarly, if there is an error in the translational motion estimates, which 
rotational error will result in the smallest number of negative depth values? The analysis 
is carried out for a complete field of view as perceived by an imaging sphere, and for a 
restricted field of view on a constrained image plane. 

2    Overview and Problem Statement 

2.1    Prerequisites 

We consider an observer moving rigidly with translation t = {U, V, W) and rotation 
u) = (a, /?, 7) in a stationary environment. Thus each scene point R = (X, Y, Z) measured 
with respect to a coordinate system OXYZ fixed to the camera's nodal point 0 has a 
velocity R = —t — w x R relative to the camera. The image formation is based on 
perspective projection. 

If the image is formed on a plane orthogonal to the Z axis at distance / from the 
nodal point (see Figure 1) the image points r = (x,y,f) are related to the scene points 
R through equation 

r=-^—R 
R- z0 

with z0 a unit vector in the direction of the Z axis and "•" denoting the inner product. 



Thus, the 2D image velocity amounts to 

r = ^p. + Vrot(r) = -i(zo x (t x r)) + j(z0 x(rx(Wx r))) (1) 

where v'^r' and vrot(r) are the translational and rotational flow components respectively 
and Z = R • z0. 

t=(U,V,W) 

Figure 1: Image formation under perspective projection on a planar retina: The instan- 
taneous rigid motion is described through a translation t = (U, V, W) and a rotation 
w = (a,ß,f). The focus of expansion (FOE), given by (^/, ^r/), denotes the direction 
of translation, and the AOR (axis of rotation point), given by (-/,-/), denotes the 
intersection of the rotation axis and the image. 

Similarly, if the image is formed on a sphere of radius / (i.e., r • r = f2) (see Figure 2), 
the image r = (x, y, z) of any point R is 

r = R/ 
IRI 

with |R| being the norm of R and denoting the range; thus the 2D image motion is 

r = -7z~ + vrot(r) = -p577 (rx(rxt))-«xr 
IRI |R|/ (2) 



The component of the flow un along any direction n is therefore 

un = r-n = -£-n + vrot • n    or   un = r-n = -p^--n + vrot • n (3) 

As can be seen from equations (1) and (2), the effects of translation and scene structure 
cannot be disentangled and thus we can only obtain the direction of translation t/|t| and 
the depth (range) of the scene up to a scaling factor, that is jfr (W-J. For the sake of 
simplicity, we will assume t to be of length 1 and we will no longer mention the scaling 
in the computation of structure. 

Figure 2: Image formation under perspective projection on a spherical retina. 

2.2    Previous work 

It is in general a very hard task to develop analytical results about the stability or error 
sensitivity of structure from motion. This is due to the nonlinearities and the large 
number of parameters that are involved. As a result a fair number of observations and 
intuitive arguments have been developed by a multitude of authors over the years. Most 
important, a small number of studies have given rise to three crisp results regarding noise 
sensitivity in structure from motion [7]. These are: 

(a) A translation can be easily confounded with a rotation in the case of a small field 
of view under the assumption of lateral motion and insufficient variation of depth 



[1,6]. Intuitively, translation along the x axis can be confused with rotation around 
the y axis and translation along the y axis with rotation around the x axis. Evidence 
for this result can be obtained intuitively from the flow equation (1). As can be 
seen, if the scene in view is a plane, then the flow becomes a polynomial in the 
retinal coordinates x, y with the terms ti + u>2, t2 — Wi representing the zero-order 
terms. An elegant proof of this fact using techniques from estimation theory has 
been presented by Daniilidis [6] for the case of unbiased estimators. 

(b) Usually an error metric is developed whose minimization provides a solution for 3D 
motion and subsequently for structure. If this metric is not appropriately normal- 
ized, in the case of a small field of view the translation estimate is biased toward 
the viewing direction. This can be seen directly from the epipolar constraint. In its 
instantaneous form the epipolar constraint becomes (t x r) • (r — a? x r) = 0 assuming 
/ = 1. In the discrete case, if ri and r2 are corresponding image points before and 
after the motion the constraint is r2 • (t x Rri) = 0, where R represents the rotation 
matrix. A solution coming from the minimization of J2i \\r2i • (t x i?rlt)||

2 is bound 
to be biased, because the cross product introduces the sine of the angle between 
vectors t and Rru as a factor. This, in turn, makes the minimization prefer vectors 
t that are closer to the center of gravity of the points Rru so that the sine and 
hence the residual is smaller [36, 38]. Techniques from statistics such as maximum 
likelihood estimation [36] or Rayleigh optimization [37] can be used to deal with 
the bias, but they have their own problems. 

(c) The third result is due to Maybank [26, 27] who showed that in the case of a 
small field of view and an irregular surface the cost function resulting from the 
epipolar constraint, Yli II(* x r*') ' (*"; — <±> x r,-)||2, takes its minima along a line in 
the space of translation directions which passes through the true translation and 
(not surprisingly due to the small field of view assumption) the viewing direction. 
This means that the tilt of the direction of t can be estimated more reliably than 
its slant. 

Additional important work has been concerned with the study of configurations of scene 
points that give rise to multiple solutions from point correspondences [18], the so-called 
ambiguity-critical surfaces. It has been shown by Horn [19] that the epipolar constraint 
is not affected by first-order deformations of the motion parameters if the points lie on a 
quadric surface with certain properties. The relationship between these instability-critical 
surfaces and the ambiguity-critical surfaces has been established in [6, 16]. 

Next, we study the relationship between errors in the estimation of the 3D motion 
and errors in the estimation of the depth of the scene. This relationship is the basis for 
our subsequent error analysis. 

2.3    Distorted space 

Based on an exact computation of the motion parameters the depth (range) can be 
derived from equation (3). Let us assume, however, there is an error in the estimation 
of the five motion parameters, that is the two parameters of the direction of translation 



and the three parameters of rotation. As a consequence there will also be errors in the 
estimation of depth (range) and thus a distorted version of the space will be computed. 
A convenient way to describe the distortion of space is to sketch it through surfaces in 
space which are distorted by the same multiplicative factor, the iso-distortion surfaces 
[5,14]. 

In the following, in order to distinguish between the various estimates, we use letters 
with hat signs to represent the estimated quantities (t,w, |R|, Z, vtr, vrot) and unmarked 
letters to represent the actual quantities (t,w, |R|,Z, vtr, vrot). The subscript "e" is used 
to denote errors, where we define u> — CJ = ut and vrot — vrot = vrot£. 

The estimated depth or range can be obtained from equation (3) as 

Z(ar|R|) =        VVn 

r • n - vrot • n 

and we have on the image plane 

Z = Z( -/(2Qx(txr))-n  
\-f{zo x (t xr))-n + Z(z0 x (r x (we x r))) • n ' V ; 

and on the image sphere 

/ (rx(rxtj)'n 
|R| = ,R|' ((rx(rxt))-n + /|R|(«{xr)-nj (5) 

From equation (4) it can be seen that Z can be expressed as a multiple of Z, where the 
multiplicative factor, which we denote by D, the distortion factor, is given by the term 
inside the brackets. Thus the distortion factor is 

-/(z0 x (t x r))   n 
D = i\l—i LL  (6) 

—/ (z0 x (t x r)) • n + Z (z0 x (r x (u:e x r))) • n 

Similarly we can interpret the estimated range in equation (5) as a multiple of the actual 
range with distortion D, where 

(r x (r x t)) • n 
D = ^ ^ ^  (7) 

(r x (r x t)) • n + /|R| (u?e x r) • n w 

Equations (6) and (7) describe, for any fixed direction n and any distortion factor D, a 
surface in space. Any such surface is to be understood as the locus of points in space 
which are distorted in depth (range) by the same factor D, if the corresponding image 
measurements are in direction n. 

It should be emphasized that the distortion of depth also depends on the direction 
n of the flow measurement (hereafter called the flow direction) used as basis for the 
computations and therefore is different for different directions of flow. This means simply 
that if one estimates depth from optical flow in the presence of errors, the results can be 
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very different, depending on whether the horizontal, vertical, or any other component is 
used. Depending on the direction, any value between +00 and -co can be obtained! 

In the analysis in this paper, we are not interested in actual 3D space, but we consider 
the surfaces in visual space, that is, the space perceived under perspective projection 
where the dimensions parallel to the image are measured according to the size with 
which they appear on the image. 

Figure 3a gives an example of an iso-distortion surface, and Figure 3b illustrates a 
family of iso-distortion surfaces corresponding to the same gradient direction but different 
distortion factors D. The same family is intersected with the xZ plane in Figure 3c. In 
the plane the intersections give rise to a family of contours. 

As can be seen the iso-distortion surfaces of a family intersect in a curve, and they 
change, continuously as we vary D. Thus all the space between the 0 distortion surface 
and the —00 distortion surface (which is also the +00 distortion surface) is distorted by 
a negative distortion factor. 

2.4    Description of results 

In the forthcoming sections we employ a geometric statistical model to represent the 
negative depth values. We assume that the scene in view lies within a certain depth 
(range) interval between a minimum value and a maximum value. The flow representation 
vectors in the image are in different directions, and we assume some distribution for their 
directions. Our focus is on the points in space which for a 3D motion estimate yield 
negative depth (range) estimates. 

For every direction n the points in space with negative depth estimates cover the 
space between the 0 and —00 distortion surface within the range covered by the scene. 
Thus for every direction we obtain a 3D subspace, covering a certain volume. The sum of 
all volumes for all directions, normalized by the flow distributions considered, represents 
a measure of the likelihood that negative depth values occur. We call it the "negative 
depth volume" or "negative range volume." The idea behind our error analysis lies in 
the minimization of this negative depth (range) volume—that is, we are interested in the 
relationship between the translational and rotational motion errors that minimizes this 
volume. 

In our analysis we do not want to make any particular scene-related assumptions 
favoring particular orientations or depth values. We wish to treat all depth values and 
flow directions as having equal importance. To be more precise, we assume that the flow 
directions are uniformly distributed in every direction and at every depth (range) between 
a minimum value Z-m-m{\Rm\r,\) and a maximum value -Zmax(|Rmax|)- We do not wish to 
assume any particular distribution for the noise in the flow measurements. Therefore, 
we do not consider any noise in the measurements. Thus, one can view our analysis as a 
geometric investigation of the inherent confounding of translation and rotation, which is 
the reason behind the instability in structure from motion. 

In summary, as an answer to the question about the coupling of motion errors, the 
following results are obtained: 

(a) If we take the whole sphere as the imaging surface and we assume an error in the 



(a) (b) 

400 

250 

(c) 

Figure 3:   (a) Iso-distortion surface in xyZ space.    The parameters are:   (xo,yo)  = 

(wf'Wf) = (-50>-25)> (*o,»o) = (|/,|/) = (0,-20), «e = (ae,Ä,7e) = 
(-0.005,0.001,0.003), D = 1.5, n = (1,0), / = 500 (corresponding to a field of view of 
50°). (b) Family of iso-distortion surfaces for the same motion parameters (n = (1,0)). 
(c) Corresponding iso-distortion contours in the xZ plane. 



estimation of rotation, then the direction of translation that minimizes the negative 
depth volume is the correct direction of translation. 

The practical implication of this result is that 3D motion estimation is most easily 
accomplished for a complete field of view, as provided by an imaging sphere. A 
working system (biological or artificial) is usually equipped with an inertial sensor 
which provides rotational information, though probably with some error. On the 
basis of this information, the best one can do to estimate the remaining translation 
is to assume that the flow field obtained by subtracting the estimated rotation 
is purely translational and apply a simple algorithm designed for only translation 
[2, 20, 29, 34]. 

Such algorithms, if based only on the constraint that the depth is positive, are 
formulated basically as constrained minimization problems. The underlying idea 
is illustrated in Figure 4. Assuming the observer is approaching the scene, the 
exact 2D motion vector at every point is away from the FOE (the point where the 
translation axis pierces the image). Thus the projection un of the flow vector on 
any direction n is confined to lie in a half-plane, as defined by line e in Figure 4, and 
the FOE is to be found in the complementary half-plane. Thus the estimation of 
the translational direction can be implemented by simply voting for a half-plane at 
every point. The best solution corresponds to the location with the highest number 
of votes. 

Figure 4: The translational flow vector ut has its tip anywhere along the line e2- The 
focus of expansion lies on the (shaded) half plane defined by the line e that does not 
contain possible vectors Uf. 

Estimation of purely translational motion is much simpler than estimation of com- 
plete 3D rigid motion, which requires techniques that decouple the translation from 
the rotation in some way, and if designed on the basis of the constraint of positive 
depth, require voting in higher dimensions [11, 12, 13]. 

As demonstrated in the forthcoming analysis, however, a simple algorithm designed 
for translation only will find the correct solution. Thus insects with spherical eyes, 
such as bees and flies, have a big advantage in the task of 3D motion estimation. 

(b) On the other hand, if we assume a certain error in the estimation of translation on 
a spherical image, we find that the vector of the rotational error we lies on the same 



geodesic as the real translation t and the estimated translation t at equal distance 
from both, that is, (t +1) x a?£ = 0 (t and t are unit vectors). 

(c) Considering as imaging surface a plane of limited extent, we find that the trans- 
lational and rotational errors are perpendicular to each other. Using the notation 
^- - |f = ^ and ^ - £f = jfo., this means that ^ = _£. If we fix the 

rotational error (ae,/?e,7£), this provides us with a constraint on the direction of 
the translational error. 

(d) If we fix the translational error (x0e,y0c) we obtain the same constraint, and in 
addition we find that 7£ = 0. 

The results developed in this paper have a clear relationship with those of existing 
error analyses as described in Section 2.2, with the exception of the bias of transla- 
tion towards the viewing direction, since this result has been obtained on the basis 
of particular algorithms and image measurement configurations. 

Regarding the confusion between translation and rotation, it has been experimen- 
tally observed and proven for simple scene structures, restricted fields of view, 
and certain estimation techniques using particular statistical estimators, that the 
translation along the x axis is coupled with rotation around the y axis and that the 
translation along the y axis is coupled with rotation around the x axis. This can 
be explained using the constraint we have developed. If ßc changes, the constraint 
^ = — &■ remains intact if x0f, is changed appropriately. Similarly, an error in ac 

can be hidden in yoe- This, however, is not true in general. An error in ße could 
be coupled with an error in y0c or in both x0e and y0c. The only condition that 
must be satisfied is the perpendicularity between the translational and rotational 
errors; the confusions between ^-translation and r/-rotation, and y-translation and 
x-rotation, are not decoupled. 

Regarding the distribution of the global minima of the objective function derived 
from the epipolar constraint, there is an interesting connection. Given a partic- 
ular rotational error, our result shows perpendicularity of the translational and 
rotational errors irrespective of the scene in view. Thus, all possible estimated 
translations are to be found on a line passing through the real translation normal 
to the rotational error. In the analysis of Maybank, various assumptions are made 
that can be interpreted as introducing a rotational error. Therefore, the line found 
in [26, 27] should be perpendicular to the rotational error due to these assumptions. 

The importance of the results obtained for the plane also lies in their consequences 
for shape estimation. They can be translated into the statement that planar retinas 
with high resolution at the center are advantageous in the computation of shape. 
As will be shown in Section 5, if ^ = — &-, near the fixation center for any depth 
Z, the distortion factor is approximately the same for every flow direction! This 
means that all scene points of the same depth are distorted by the same factor and 
thus a depth map is derived whose level contours are the correct ones! 

10 



3    Analysis on the Sphere 

3.1    Fixed rotational error 

We need a parameterization for expressing all possible orientations n tangent to the 
sphere at every point. One way to achieve this that is convenient for our problem is 
through the selection of an arbitrary unit vector s. Given s, at each point r of the 
sphere, the vector if^r defines a direction at the tangent plane. As s varies along half a 

great circle, ^y takes on every possible orientation in the tangent plane at every point r 
with the exception of the set of points r lying on the great circle of s, which is of measure 
zero. To facilitate the analysis, we choose s perpendicular to w£. 

As shown in Figure 5, let u>e be parallel to the x axis and let s be the set of all the unit 
vectors in the yz plane with s = (0, sin x, cos x) and x in the interval [0 ... TT]. The flow 
directions n at every point are defined as n = ^ZJL. This parameterization, however, does 
not treat all orientations equally (as s varies along a great circle with constant speed, s x r 
accelerates and decelerates). Thus, in order to obtain a uniform distribution we must 
perform some normalization. Luckily, however, this normalization does not complicate 
matters in the following proof because, due to symmetry, its behavior with regard to 
monotonicity is the same as the of one of the volumes of negative depth in space for the 
functions considered. 

Figure 5: Parameterization used in the analysis: u>c = A(l, 0,0), s = (0, sin x, cos x) with 
X€[0...^],n = W. 

11 



We assume a uniform distribution for the directions n. Thus, in order to obtain the 
negative range volume Vn, we have to integrate the individual volumes in each direction 
over all directions. If tp 6 [0, ir] provides a uniform parameterization for n, as given in 
Appendix A, V(if>) is the volume for a single direction n(^), and x is the parameterization 
for n as defined above, the following transformation applies: 

v.=r^)#=r'('V(jw) 
Jo Jg-Ho) 

dg(x) 
dx 

dx 

where tp = g(x)- For this parameterization the normalization term is 

dg(x) 
dx 

sin (fy 

cos(ipy)
2 cos(x - ipx)2 - 1 (8) 

where <py is the angle between vector r and the yz plane, and yx is the angle between the 
projection of r on the yz plane and some fiducial direction in the yz plane. A derivation 
is given in Appendix A. 

Figure 6: Parameterization of r: <py is the angle between r and the yz plane; <px is the 
angle between the projection r on the yz plane and some direction in the yz plane. 

Our focus is on the points in space with estimated negative range values |R|. Since 
n = i|^i and s • o?e = 0, we obtain from equation (5), by setting / = 1, 

ft x sj • r 
R = R 

(t x s) • r - |R| («e • r) (s • r) 

12 

<0 (9) 



From this inequality the following constraint on |R| can be derived: 

sgn(t x s) • r = -sgn ((t x s) • r - |R|(«e • r)(s • r)) (10) 

At any point r in the image this constraint is either satisfied for all values |R|, or it 
is satisfied for an interval of values |R| bounded from either above or below, or it is not 
satisfied for any value at all. Thus, inequality (9) provides a classification for the points 
on the sphere, and we obtain four different kinds of areas (types I-IV). The locations of 
these areas are defined by the signs of the functions (txs)-r, (txs)-r and (w£ • r)(s • r), 
as summarized in Table 1. 

Table 1: 

area location constraint on  R 

I sgn(t x s) ■ r = sgn(t x s) • r = sgn(r • u>£)(r • s) 
(r • w£)(r ■ s) 

II -sgn(t x s) • r = sgn(t x s) • r = sgn(r • w£)(r • s) all R| 

III sgn(t x s) • r = -sgn(t x s) • r = sgn(r • w£)(r • s) lRl<r(tXv'r, (r-we)(r-s) 
IV sgn(t x s) • r = sgn(t x s) • r = -sgn(r • u;£)(r • s) none 

Thus for any direction n defined by a certain s, we obtain a volume of negative 
range values consisting of the volumes above areas I, II, and III. An illustration for both 
hemispheres is given in Figure 7. As can be seen, areas II and III cover the same amount 
of area, which has the size of the area between the two great circles (t x s) • r = 0 and 
(t x s) • r = 0, and area I covers a hemisphere minus the area between (t x s) • r = 0 and 
(t x s) • r = 0. 

If the scene in view is unbounded, that is, |R| € [0... oo], there is a range of values 
|R| above any point r in areas I and III which results in negative range estimates. If 
we consider a lower bound |Rmin| ^ 0 and an upper bound |Rmax| # oo, we obtain two 
additional curves Cmin and Cmax with Cmin = (t x s) • r - |Rmin| (w£ ■ r)(s • r) = 0 and 
Cmax = (t x s) • r — |Rmax| (&e • r)(s • r) = 0 as bounds for areas with negative range values 
(as shown in Figure 7). As can be seen, the curves Cmin = 0, Cmax = 0, (t x s) • r = 0 
and (u>£ • r)(s • r) = 0 intersect at the same point. 

In area I, we do not obtain any volume of negative range estimates for points r between 
the curves (u>£ • r)(s • r) = 0 and Cmax = 0; the volume for points r between Cmin = 0 

and Cmax = 0 is bounded from below by |R| = (J*ff(j,
r
r) (and from above by |Rmax|) 

and the volume for points r between Cmin = 0 and (t x s) • r = 0 extends from |Rmm| 
to |Rmax|- In area III we do not obtain any volume for points r between (t x s) • r = 0 
and Cmin = 0. The volume for points r between Cmin = 0 and Cmax = 0 is bounded 
from above by |R| = (^*x

ry(s
r
r) (and from below by IRmml) and the volume for points r 

between Cmax = 0 and (u;e • r)(s • r) = 0 extends from |Rmin| to |Rmax|. 
We are given wc and t, and we are interested in t, which minimizes the negative range 

volume. For any s the corresponding negative range volume becomes smallest if t is on 
the great circle of t and s, that is, (t x s) • t = 0, as will be shown next. 
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Figure 7: Classification of image points according to constraints on |R|. At Cm\n and 
Cmax5 |R| is constrained to be greater (area I) or smaller (area III) than |Rmin| or |Rmax|- 
The two hemispheres correspond to the front of the sphere and the back of the sphere, 
both as seen from the front of the sphere. 
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Let us consider a t such that (t x s) • t / 0 (i.e., t does not lie on the great circle 
defined by t and s) and let us change t such that (t x s) • t = 0. As t changes, the area 
of type II on the sphere becomes an area of type IV and the area of type III becomes an 
area of type I. Thus, the negative range volume obtained consists only of range values 
above areas of type I. 

Let us use the following notation. Ani-i denotes the area which changes from type 
III to type I and Vui and Vi(ui) are the volumes before and after change. Similarly, 
Au-iv denotes the area which changes from type II to type IV and Vu and Vjv are the 
corresponding volumes. 

The change of t does not have any effect on the volumes above the areas that did 
not change in type, as can be seen from the constraint on |R| in Table 1. However, 
the change of t causes a decrease in the volume above the areas which changed in type: 
Volume Vi(in) < Vu- Furthermore, as can be seen from equation (8), the normalization 
term is the same for points ri(<pXl,<pyi) and r2(<fX2i

(Py2) symmetric with respect to the 
great circle s • r = 0, because ipyi — (py2 and <pXl + ipX2 = 2kir with k € N. Thus we 
encounter the same normalization factors in areas Aui-i and Au-iv- 

The volume of negative range values for any s is smallest for (t x s)-t = 0, independent 
of the range of values in which the scene lies. If we assume an upper bound |Rmax| / oo, 
or a lower bound |Rmin| ^ 0, or both bounds on the scene in view, there exist points 
r in areas I and III above which there are no range values which contribute to the 
negative range volume. However as shown before, since the curves Cmm = 0, Cmax = 0, 
(a?£ • r)(s • r) = 0 and (t x s) • r = 0 intersect at the same point, Vu must always be larger 
than V/(j/7). 

For any s the smallest volume is obtained for s, t, and t lying on a great circle. 
Therefore, in order to minimize the total negative range volume Vn, we must have t = t. 

Thus, in summary, we have shown that for any given rotational error we the negative 
range volume is smallest if the direction of the actual translation and the estimated 
translation coincide, that is, t = t. 

3.2    Fixed translational error 

In this section we choose the following parameterization: The unit vectors t and t lie 
in the yz plane, and (t • t) > 0; s lies in the xz plane with s = (sinx,0,cosx) and 
X € [0,7r]. AS before, n = if^fj. The normalization term necessary for the uniformity 

of the orientations n in this parameterization can be obtained from equation (8) by 
substituting <py for ipx and (pz for <py, that is, 

dg(x) 
d(x) 

smip2 

cos((f2)
2 cos(x - <fy)2 -1 

where ipz is the angle between r and the xz plane and <py is the angle between the 
projection of r on the xz plane and some fiducial direction in the xz plane. 

We are given t and t, and we are interested in the direction of u?e minimizing the 
negative range volume. In analog to Section 3.1, we study the different areas on the sphere 
with unbounded and bounded intervals of estimated negative range values.   Requiring 
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that R be negative we obtain the inequality 

(t xs) 
R |R| (t x s) • r - |R| (K • r)(s • r) - («e • r)) < ° (U) 

and thus the three curves (t x s) • r = 0, (t x s) • r = 0 and g = (u>£ • r)(s • r) — (u?e • s) = 0 
separating areas I to IV.1 The classification is analogous to the one in Table 1, except 
that the term (u;£ • r)(s • r) must be replaced by the term (o;e • r)(s • r) — (w£ • s). Figure 8 
provides a pictorial description of this classification for the case of s outside the interval 
[t,t], that is, sgn(t x s) = sgn(t x s), and the case of s between t and t, that is, 
sgn(t x s) = —sgn(t x s). If sgn(t x s) = sgn(t x s) the sphere is separated into areas I 
and IV, each covering an area the size of a hemisphere; otherwise, the sphere is separated 
into areas II and III, again each the size of a hemisphere. 

Again, if we consider a lower bound |Rmm| and an upper bound |Rmax| for the scene 
in view, we obtain the two curves Cmin = (t xs)-r— |Rmin| ((<*vr)(s-r) —uvs)) = 0 and 
Cmax = (t x s) • r- |Rmax| ((u>£ ■ r)(s • r) - w£ • s)) = 0, as shown in Figure 8. Cmin = 0 and 
Cmax = 0 separate the points r in areas I and III into those with no volume of negative 
range values, those with a volume bounded by a value different from |Rmin| and |Rmax|, 
and those with a volume ranging from |Rmin| to |Rmax|. 

The proof is given in three parts. We decompose u?£ into a component u>par which 
lies in the xz plane and a component wperp = A(0, —1,0) parallel to the y axis: u;£ = 
Wpax + Wperp. First, we show that if o;par = 0, the smallest negative depth volume is 
obtained for a>perp = 0. Second, we show that if wperp = 0, a vector u;par ^ 0 with 
(t x a?par) = —(t x wpar) is obtained, which we call wparo, that provides the smallest 
negative range volume. Third, we prove that u>e, in order to minimize the negative range 
volume, must satisfy the constraint (u)e -t) = (w£ -t). However, if we change the direction 
of w£, which amounts to ,a;

par^a?
perp| with u>peTp = A(0, —1,0), by continuously increasing 

A > 0, the negative depth volume increases monotonically, and thus the smallest negative 
depth volume is obtained for u>paiQ. The details of the proofs will now be given. 

Part 1 (cjperp minimizing the negative range volume) 

Let «par = 0; then g = (u>peTp ■ r)(s • r) = 0, and the curves C; = 0 for i = {min, max} 
become 

d = (t x s) • r - |R,-| (ovrp • r)(s • r) = 0 

Since (t x s) x i/JpeTp = 0, 

/sinZ(t,s)lt| \ 
Ci = (wperp • r)   -j- —— - (s ■ r) I = 0 

where sinZ(t,s) denotes the sine of the angle between vectors t and s.   Curve C,- = 0 

thus consists of the great circle a>perp • r = 0 and the circle f^     \m\ — (s • r) = 0 parallel 

1 Curve g = 0 is of the same form as the zero-motion contour denned in [13], which got its name from 
the fact that it defines the locus of points for which a flow field due to rigid motion with translation s 
and rotation w can take on the value zero. 
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(a) (b) 

Figure8: Classification of image points for general u> e. (a), (b): sgn(txs)-r = sgn(txs)-r. 
(c), (d): sgn(t x s) • r = -sgn(t x s) • r. If sgn(t x s) = sgn(t x s) the negative estimated 
range values are in area I above the area defined by curves Cmax = 0 and (t x s) • r = 0. 
If sgn(t x s) = —sgn(t x s) the negative estimated range values are above area II and in 
area III above the area defined by curves Cmin = 0 and (w£ • r)(s • r) — (u;£ • s) = 0. 
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to the great circle (s • r) = 0. If ?£ }*?\R\ > 1 this circle disappears. Figure 9 provides a 
pictorial description of the areas I-IV and the curves C{ = 0. 

(a) (b) 

(c) (d) 

Figure 9: Classification of image points for we = OJ perp- 

Let us consider two flow directions defined by vectors Si and s2 that are symmetric 
with regard to t, that is (si x t) = —(s2 x t), and let Si be between t and t. For every 
point ri in area III defined by Si there exists a point r2 in area I defined by s2 with the 
same normalization factor such that the negative estimated ranges above ri and r2 add 
up to |Rmax| — |R-min|- Thus, the volume of negative estimated range obtained from Si and 
s2, denoted by V(si) and V(s2) respectively, amounts to the area of the sphere Asp times 
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|R-max| - |R-min|, that is, V(si) + V(s2) = ^4sp(|Rmax| - |Rmin|) (area II of Si contributes 
a hemisphere; area III of Si and area I of s2 together contribute a hemisphere). Let us 
decompose the negative range volume and provide the following definition: 

Vn = VA + VB   and   VA = VA> + VA« 

VA corresponds to the volume obtained from all s with |t • s| > |t • t|. V# corresponds to 
those s with sgn(t • s) = — sgn(t • s) (that is, all s between t and t) and VA» corresponds 
to those s with sgn(t • s) = sgn(t • s) (that is, the set of s symmetric in t to the set of s 
in VA'). VB corresponds to the volume from all the remaining s's. VA< consists of range 
values above areas of type III and II, and VA» and VB consist of range values above areas 
of type I only. 

VA = VA> + VA» = A^QRr^l - |Rmin|)Z(t, t) and VB > 0.   VB = 0 if for all s 

contributing to volume VB we have ,im  i!y^ , > 1, that is, if |B.max||U>p  ... 

sinZ(t,t)|t| 
|Rmax| !<*>■ 

> 1 
perpl 

Thus, in summary, if a?perp = 0, the minimum negative range volume Vn is equal to 

AspGRmaxI - |Rmm|)Z(t,t) and is obtained for all «peIp with |u>perp| < si"^]|t|. If 

|Rmax| = oo or (t • t) = 1 there is only one solution, wperp = 0. 

Part 2 (wperp minimizing the negative range volume) 

If a;perp = 0, curve g = (wpar • r)(s • r) — (wpar • s) = 0 is symmetric with respect to the 
xz plane and curves C, = 0 for i = {min, max} become (see Figure 10) 

Ci = (t x s) • r - |R,| ((u;par • r)(s • r) - (u;par • s)) = 0 

Let us fix s and |o;par| and let us vary the direction m/")- As Z(s,a;par) increases, the 
area between Cm-m = 0 and Cmax = 0 multiplied by the normalization factor, and the area 
between Cmin = 0 and (txs)-r= 0 multiplied by the normalization factor, decrease. This 
can be verified by numerical integration. It can also be understood from the following 
observation: Referring to Figure 11, we see that if (s ■ wpar) ^ 0, an increase in Z(s,o;par) 
causes an increase in the size of curve gi = 0. Therefore, the area between C; = 0 and 
(t x s) • r = 0 in the left hemisphere increases, but the area between d — 0 and (t x s) • r 
in the right hemisphere decreases by a larger amount, since the area inside curve g = 0 is 
smaller than the area inside curve (t x s) • r = 0. Furthermore, the normalization factors 
in the area added in the left hemisphere are smaller than the normalization factors in 
the area lost in the right hemisphere. Therefore, if sgn(t x s) = sgn(t x s), the negative 
range volume above area I decreases, and if sgn(t x s) = —sgn(t x s) the negative range 
volume above area III increases as Z(s,u;par) increases. 

The negative range volume V(s) for each s can be decomposed into a component Vi(s) 
dependent on (txs)-rand a component V2(s) dependent on |Rj| ((wpar-r)(s-r) — (u?par-s)). 
The overall negative range volume Vn is obtained by integrating V^(s) over all s, that is, 
Vn = fs V(s) ds = fsVi(s) ds + fs V2(s) ds. Since T4(s) does not depend on u;par, Vn will 
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Figure 10: Classification of image points for cje — u; par- 

attain its minimum at the minimum of /s V^s) ds, which is achieved when o?par is between 
t and t at an equal distance from both, that is, if (t x wpar) = — (t x uipai). 

Let us denote by o?paro the wpar minimizing the negative range volume Vn. We have 
found the direction of wparo; it remains to be shown that |wpar01 7^ 0. 

For Wparo   =  0,   K   =  ^p(|Rm«| - |Rrnin|)Z(tt).    Vn   =  VA + VB   =  VA. + VA„ + VB. 
Since for any Si with sgn(t x Si) = —sgn(t x Si), and any s2 with sgn(t x s2) = sgn(t x 
s2), y(si) + V(s2) < AspdRmaxI - |Rmin|), it follows that volume VA = VA> + VA» < 
^sp(|Rmax| - |Rnün|)U(tt)). Volume VB > 0. If (t • t) = 0 (that is, Z(tt) = TT/2), volume 
VB — 0, and thus there exists a u;paro ^ 0 minimizing the negative range volume. Since 
due to the symmetry on the sphere, |wparo| must change monotonically as (t-t) increases, 

we conclude that u?paro ■=£■ 0 for all (t • t) > 0. 

Part 3 (u>£ = u;par + u>peTp) 

Let us consider ose = u>pai + a>perp, with a;par a component in the xz plane and o;perp = 
A(0,—1,0) parallel to the y axis. Therefore, 

9 - (wpeip • r)(s • r) + (a?par • r)(s • r) - (o7par • s) = 0 

and 

d = (t x s) • r - |R,-| ((wperp • r) (s • r) + (wpar • r) (s • r) - (wpar • s)) = 0 

Let us fix |u;£| = 1 and change wc by increasing |o>perp| and thus increasing A. If 
(wpar • s) > 0 an increase in A causes a decrease in the area between Cmin = 0 and 
Cmax = 0 times the normalization factor, and a decrease in the area between Cmjn = 0 
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Figure 11: As u;par changes from Wj to w2 and Z(u7par, s) increases, curve g = 0 changes 
from gx to g2 and curve C; = 0 changes from C\ to C2. In areas of type I the volume 
between d = 0 and h = (t x s) • r = 0 decreases and in areas of type III the volume 
between C; = 0 and g = 0 increases. 
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and (t x s) • r = 0 times the normalization factor. Again, this can be verified either by 
numerical integration or through the following observation in reference to Figure 12: An 
increase in A causes an increase in the size of g = 0. Since g = 0 is not symmetric about 
the xz plane, the area between d = 0 and (t x s) • r = 0 in the left hemisphere times 
the normalization factor increases, but the area between d = 0 and (t x s) • r = 0 in the 
right hemisphere times the normalization factor decreases by a larger amount. 

Thus, an increase in A has the effect that for all s with sgn(t xs) = -sgn(t x s) the 
negative range volume above area III increases, and for all s with sgn(t x s) = sgn(t x s) 
the volume above area I decreases. It can further be observed that the larger (wpar-s), the 
larger the decrease in the volume above area I (or the larger the increase in the volume 
above area III), with a peak for (a?par • s) = 1. 

Using the same argument as before, that the negative range volume Vn can be de- 
composed into a component due to (t x s) • r only and a component due to |R,| (u;£ • r)(s • 
r) — (ut • s) only, we find that the volume above areas of type III must be as small as 
possible, and thus (u;£ • t) = (w£ • t). Therefore u>e can only be of the form 

We = A (wparo + Wperp) 

The smallest negative range volume is smaller for wparo than for any u>peTp. 
Again we decompose Vn: Vn = VA + VB = VA> + VA,< + VB. If (t • t) = 0, VB = 0, 

and since an increase in A causes an increase in VA< which is larger than the decrease 
in VA", the negative range volume must increase monotonically and \u>e\ must decrease 
monotonically. Therefore, if (t • t) > 0 and (t • t) ^ 1 the smallest negative range volume 
must also increase monotonically and the \u>£\ minimizing the volume must decrease 
monotonically. 

Thus in summary we have shown that for a given t and t, the rotational error wc 

which minimizes the negative range volume is wparo ^ 0. The direction of wparo is such 
that (wparo x t) = -(wparo x t). 

4    The Planar Case 

Let us express equation (4) in the more common component notation: f = (ri-,r2-,r3). 
rz is zero. If we denote ri by u and f2 by v and express the coordinates of the focus of 
expansion as (x0,y0) = (^f, ^f) we obtain the well-known equations 

u = *f + urot = (x-x0)% + af-ß(f + f)+iy 

Since, due to the scaling ambiguity, only the direction of translation can possibly be 
obtained, we set W = 1 and obtain from equation (7) 

/ \ 

(x - XQ) nx + (y - yQ) ny   z = z 
(x - xo) nx + (y- t/o) ny + z( (acf - A (y + /) + 7#) ** 

+ (ae (£ + /)- ßef - 1.x) ny) 
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Figure 12: As ut changes from u1 = g^ to w2 = ^
p^^P

e7|, curve g = 0 changes 
from gi to #2 and curve d = 0 changes from C\ to C2, the volume of negative range 
between C; = 0 and A = (txs)-r = 0 decreases above area I, and the volume of negative 
range values between d = 0 and g = 0 increases above area III. 
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where nx and ny denote the components of n in the x and y directions. 
In the following analysis, we assume that the FOE and the estimated FOE are within 

the image. We do not study any particular image shape, and we ignore the exact effects 
resulting from volumes of negative depth in different directions being outside the field 
of view. Such effects might introduce biases, but this is of little practical interest. Any 
implementation of algorithms based on the constraint of negative depth must consider 
the position of the FOE on the image, and cannot just be based on blindly counting the 
negative values. We also perform some simplification: For a limited field of view, the 
terms quadratic in the image coordinates, which appear in the rotational components, 
are small with respect to the linear and constant terms, and we therefore drop them. 

The 0 distortion surface thus becomes 

(x - x0) nx + (y- y0) ny = 0 (13) 

and the —oo distortion surface takes the form 

(x - x0)nx + (y- 2/oK + Z (("&/ + w)n* + M ~ 1'x) nv) = ° (14) 

The flow directions (nx,ny) can alternatively be written as (cos if>, sinij)), with ip <G [0,7r] 
denoting the angle between [nx, ny]T and the x axis. 

To simplify the visualization of the volumes of negative depth in different directions, 
we perform the following coordinate transformation to align the flow direction with the 
x axis:   for every xb we rotate the coordinate system by angle ij;, to obtain the new 
coordinates „, _ _        r ,_ 

[*', yf = R[x, y}T, [*</, Vof = R[xo: yo]T 

Wo, y'of = RW y\T, K AT = Ä[««, Ä]r 

where R = 
cos xj;     sin tp 
- sin \\)   cos ip 

Equations (13) and (14) thus become 

(x' — x') = 0 
and   (x' - x0') + Z (-&'/ + 7ey) = 0 

In the following proof we first consider the case of 7£ = 0 and we then study the 
general case. 

Part 1 (7e = 0) 

If 7e = 0, the volume of negative depth values for every direction x\> lies between the 
Oil T*Ta (**f^c 

(x'-x'o) = 0    and    (x'-xo')-ßi'fZ = 0 

Equation (x' - x'0) = 0 describes a plane parallel to the y'Z plane at distance x'0 from 
the origin, and equation (x' - xd) - ße'fZ = 0 describes a plane parallel to the y' axis 
of slope jtj, which intersects the x'y' plane in the x' coordinate xd- Thus we obtain a 
wedge-shaped volume parallel to the y' axis. Figure 13 illustrates the volume through a 
slice parallel to the x'Z plane and Figure 14 gives an illustration of this volume in space. 
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Figure 13: Slice parallel to the x'Z plane through the volume of negative estimated depth 
for a single direction. 

The scene in view extends between the depth values Z^n and Zmax. The — oo dis- 
tortion surface intersects the planes Z = Zmax and Z = Zm™ in the x' coordinates 
%d + ße'fZmSiX and x0' + ßjfZm™. As can be seen from Figure 13, whether we are 
given the rotational error ß/ or the translations x0' and x'0, and thus the translational 
error x0/ = cosifixoc + smipy0c = x0' — x'0, the minimum negative volume is obtained if 
x'o = xo + /3//(Zm**+Zmi"). In other words, the 0 distortion surface has to intersect the 
—oo distortion surface in the middle of the depth interval in the plane Z = z™**+zmm. 

Thus, for the direction defined by any angle tp, the smallest volume of negative depth 
estimates is obtained if the rotational and translational errors are related as follows: 

ß: 
-2x0e' 

J  \^raax   i   -"minj 

Since ß/ = cos ij^ßc — sm^ac and x0< = cos^:ro£ + sin^t/oE, the volume is minimized 
for every direction if 22t = —&■. In other words, the rotational error (a£,ß£) and the 
translational error (x0e,yo€) have to be perpendicular to each other. 

Part 2 (7e ^ 0) 

If 7e 7^ 0, the — oo distortion surface becomes 

(*' -x'0) + Z (-&'/ + 7£y') = 0 

This surface can be most easily understood by slicing it with planes parallel to the 
x'y' plane. At every depth value Z, we obtain a line of slope -=^ which intersects the 
x' axis in x' = x0' + ß/fZ (see Figure 15).  For any given Z the slopes of the lines in 
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Figure 14: jc = 0: The volume of negative depth values for a single direction between 
the 0 and — oo distortion surfaces. 

different directions are the same. An illustration of the volume of negative depth values 
is given in Figure 16. 

In part 1 of this analysis we found that if -ye = 0, the smallest volume of negative 
depth values is obtained if x'0 = x0' + fte

//(z"»«+g'»»)> and the intersection of the 0 and 
—oo distortion surfaces is at Z = z"""+^a*. In order to derive the position of x'0 that 
minimizes the negative depth values for the general case of 7£ ^ 0, we study the change 
of volume as x'0 changes from x0' + ß/fl2ss±2säal. 

Referring to Figure 17, it can be seen that for any depth value Z, a change in the 
position of x'0 to x'0 + d, assuming Z ^ 0, causes the corresponding area of negative depth 
values to change by Ac, where 

Ac = -(y'i+y'2)dsgn(je) 

and y\ and y'2 denote the y' coordinates of the intersection point of the — oo distortion 
contour at depth Z with the 0 distortion contours x' — x'0 and x' = x'0 + d. 

By intersecting the —oo distortion contour x' — x0' + Z(—ß£'f + ^y) — 0 with the 0 
distortion contours ar'-(a;o/+^(Zmin+Zinax)) = 0 and x'-(x0'+^-(ZI^Jl+Ziaax)+d) = 0, 
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Figure 15: Slices parallel to the x'y' plane through the 0 distortion surface (C0) and the 

—oo distortion surfaces at depth values Z = Z^^n (Ci), Z = —pfr (C2), and Z = Zmax 

(Cs). 

we obtain 

and therefore 

y[      ße (^min"t"^max)     i     ße 
- 2Z7r ^   ~ 

ariri      ?/   _        ße' (^min+.Z'max) d       ,    ße' anÜ     2/2 - 2 Z7I ~ ~ + ~ 
7t 

Z~te 1e 

Ac = -sgn(-yc)d 
'2/3/      fß/iZ^ + Z^ + d' 

It       \ Z~tt )) 
The change in negative depth volume for any direction Vc is thus given by 

rxo'+ß€'Zma,x 
Vc = sgn 

Jxo'+ßc'Z 

which amounts to 

Kc = sgn [flt) sgn (7e) d [ —^- (Zmax - Zmjn) - I In 
It It 

It can be verified that in order for Vc to be negative, sgn(&') = -sgn(d).  This means 
that XQ + d lies between x'0 and x0' (see Figure 17). 
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Figure 16: 7£ ^ 0: volume of negative depth values between the 0 and —oo distortion 
surfaces. 

We are interested in the d which minimizes Vc. By solving 

dVc 

dd 
0 

we obtain 

d = ße' 
{Zr max       ^miiO _ _ (y >   7       \ 

lnff?^) 
\ ^min / 

The change, Zc-, in the Z coordinate of the intersection between the 0 and —oo distortion 
surface is Zc = -fr and thus the intersection for the smallest negative depth volume is at 

7       — 7 ■ ry        ^max       -"nun 

In (#"•*) 
\ ■''min / 

(15) 

Since Zm is the same for all flow directions, the total negative depth volume is obtained 
if the volume in every direction is minimized. Therefore we have the constraint 

XQC   _ _ßt_ 
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Figure 17: A change of x'Q to x'0 + d causes the area of negative depth values Ac to increase 
by area A\ and to decrease by area A2. This change amounts to Ac = — (y'1+y'2)dsgn(jc). 

For a given rotational error (ae,ße,je), equation (16) defines the direction of the FOE 
of the translational error on the image plane. For a given translational error (x0£, yoc) 
equation (16) defines the direction of the AOR of the rotational error on the image. In 
addition we must have 7£ = 0. 

Some comment on the finiteness of the image is necessary here. The values Ac and Vc 

have been derived for an infinitely large image. If 7e is very small or some of the depth 
values Z in the interval [Zmin, Zmax] are small, the coordinates of the intersections y\ and 
y'2 do not lie within the image. The value of Ac can be at most the length of the image 
times d. Since the slope of the — oo distortion contour for a given Z is the same for all 
directions, this will have very little effect on the relationship between the translational 
and rotational motion errors. It has an effect, however, on the value Zm. 

Assuming the intersections are within the image, we can also derive the relative values 
of the motion errors: The amount of error depends on the interval of depth values of the 
scene in view. Since for every direction 

x'0 = x0' + ßt'fZm 
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we obtain by substitution from equation (15) 

5    Shape Estimation in the Presence of Distortion 

The above results are of great importance for the analysis of shape estimation. An error 
of the form ^ = — — guarantees that for the image near the fixation center, a shape 
map of the scene is derived which is very well behaved. 

Near the image center the image coordinates are very small. Thus using equation (12) 
the distortion factor there can be approximated by 

n _ x0nx + y0ny 

xonx + yony + Zf (ßcnx - a£ny) 

If 52s. = —Es. for any given Z, the numerator is a multiple of the denominator and thus the 
distortion factor is the same for every direction (nx, ny). This means that scene points of 
the same depth are distorted by the same factor and the computed depth map has the 
same level contours as the actual depth map of the scene. 

Depending on the sign of the rotational error, there will either be an overestimation 
for the nearby scene and an underestimation for the far scene or vice versa. All the 
distortion, however, takes place only in the Z dimension. Thus the resulting depth 
function involves an affine transformation. The invariants of these shape maps have been 
studied in the work of Koenderink and van Doom [22, 23]. 

6    Conclusions 

An algorithm-independent stability analysis of structure from motion has been presented. 
The analysis did not make any assumptions about the scene, and was based solely on 
the fact that the depth of the scene—in order for the scene to be visible—has to be 
positive. As input to the structure from motion process we did not consider optic flow 
or correspondence, but the value of the flow at every point along some direction, a 
quantity more easily computable. Our stability analysis amounts to an understanding of 
the coupling of the translational and rotational error. Given an error in the translation 
(or the rotation), we asked: what is the value of the rotation (or the translation) that 
estimates the minimum number of negative depth values? We performed the analysis for 
both a spherical and a planar retina. For the case of a planar retina we found that the 
configuration of the rotational and translational errors resulting in minimum negative 
depth is the one in which the projections of the two error vectors on the image plane 
are perpendicular to each other. For the case of a spherical retina, we found that given 
a rotational error, the optimal translation is the correct one, while given an error in 
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translation, the optimal rotation error is perpendicular to the translational error at an 
equal distance from the real and estimated translations. 

These results, besides their potential use in structure from motion algorithms, also 
represent a computational analysis comparing different eye constructions in the natural 
world. The results on the sphere demonstrate that it is very easy for a system with 
panoramic vision to estimate its self-motion. Indeed, if the system possesses an inertial 
sensor providing its rotation with some error, we have shown that after derotation, a 
simple algorithm considering only translation based on normal flow will estimate the 
translation optimally. This suggests that spherical eye design is optimal for flying systems 
such as the compound eyes of insects and the panoramic vision of birds. 

The analysis on the plane revealed that for an optimal configuration of errors, the 
estimated depth distorts only in the z direction, with the level contours of the depth 
function distorting by the same amount, thus making it feasible to extract meaningful 
shape representations. This suggests that the camera-type eyes of primates are possibly 
optimal for systems that need good shape computation capabilities. 
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Appendix A    Re-parameterization of Flow Directions 

Let us choose a uniformly distributed flow field direction ni(^) as follows. The coordi- 
nates of r = [x, y, z]T at every point on the unit sphere are obtained through a rotation 
of point [0,0,1]T by an angle ipx around the x axis followed by a rotation of angle <py 

around the y axis. Thus the rotation matrix R is given by 

R 
cos (fy 0 sin (fy 

— sin ipx sin tpy     cos <px     sin <px cos (py 

— cos <px sin (fy   — sin <px   cos ipx cos <py 

and every point r = [sin <py, sin tpx cos ipy, cos <px cos <fy]T- 
Vectors ni(^) are obtained through rotation of unit vector [sin if;, cos ip,0]T at point 

[0,0,1]T. Thus 

ni(0) = 
[cos (fy sin ^, — sin ipx sin <py sin if; + cos <px cos if;, — cos <px sin <py sin if; — sin <px cos if;] 

On the other hand, the direction n2(x) used in the analysis in Section 3.1 is chosen to 
be n2(x) = r x s(x) with s = [0,sinx,cosx]T- 

Thus n2(x) = [cos <Px cos <py sin x — sin ipx cos <py cos x, sin <py cos x, — sin ipy sin x]T- In 
order for ni(0) to be parallel to n2(x) tne following must hold: 

(niWxn2(X))T = 0 

Thus if; = g(x) = axctan(taa^~Vx^) and the normalization factor ||^| is 
l<fiy 

dif; 

dx 

For an illustration see Figure 6. 

sin(^) 

cos(^)2 cos(x - (fix)2 ~ 1 
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